ChIP-seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization

نویسندگان

  • Timothy T Perkins
  • Mark R Davies
  • Elizabeth J Klemm
  • Gary Rowley
  • Thomas Wileman
  • Keith James
  • Thomas Keane
  • Duncan Maskell
  • Jay C D Hinton
  • Gordon Dougan
  • Robert A Kingsley
چکیده

OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid-associated protein-like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR-regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR-dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium-encoded orthologues of two divergently transcribed OmpR-regulated operons (SL1068-71 and SL1066-67) had a putative OmpR binding site in the inter-operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N-acetylmuramic acid as a sole carbon source. SL1068-71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin-pretreated mouse model of colitis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi

High-density, strand-specific cDNA sequencing (ssRNA-seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3'- or 5'-untranslated regions...

متن کامل

Salmonella enterica Serovars Typhi and Paratyphi A are avirulent in newborn and infant mice even when expressing virulence plasmid genes of Salmonella Typhimurium

BACKGROUND Salmonella enterica serovars Typhi and Paratyphi A are human host-restricted pathogens. Therefore, there is no small susceptible animal host that can be used to assess the virulence and safety of vaccine strains derived from these Salmonella serovars.  However, infant mice have been used to evaluate virulence and colonization by another human host-restricted pathogen, Vibrio cholerae...

متن کامل

Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A.

Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here,...

متن کامل

Genome-Wide Analysis of the Salmonella Fis Regulon and Its Regulatory Mechanism on Pathogenicity Islands

Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromati...

متن کامل

Comparison of Salmonella enterica Serovars Typhi and Typhimurium Reveals Typhoidal Serovar-Specific Responses to Bile

Salmonella enterica serovars Typhi and Typhimurium cause typhoid fever and gastroenteritis, respectively. A unique feature of typhoid infection is asymptomatic carriage within the gallbladder, which is linked with S Typhi transmission. Despite this, S Typhi responses to bile have been poorly studied. Transcriptome sequencing (RNA-Seq) of S Typhi Ty2 and a clinical S Typhi isolate belonging to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013